содержание
предыдущая глава
следующая глава

[197]

Глава 10.
МИКРОЦИРКУЛЯТОРНОЕ РУСЛО

Согласно определению А.А.Заварина, «Под тканью понимают систему элементов — клеток и межклеточных структур, имеющих общие морфобиохимические и системные характеристики и выполняющих общие функции» (1976). Повреждение вызывает ответ, который на тканевом уровне обогащается реакциями межклеточного вещества и координированными взаимодействиями различных клеток. На органном уровне ответ на повреждение, прежде всего, связан с реакциями стромы, включая кровеносные сосуды микроциркуляторного русла данного органа (см. также выше стр.59).

Наиболее общим локальным типовым неспецифическим ответом ткани или органа на повреждение служит воспаление.

Воспаление — сложный процесс, включающий несколько типовых патологических процессов более элементарного порядка. Это типовые нарушения микроциркуляции (ишемия, гиперемия, стаз), а также тромбоз.

Логика обсуждения типового ответа васкуляризованных тканей и органов на повреждение требует вначале краткого знакомства с нарушениями кровотока в поврежденной ткани или органе.

С тех пор, как Марчелло Мальпиги (1661) открыл капиллярное кровообращение, внутритканевой кровоток подвергся глубокому и разностороннему исследованию. От представления о простом переходе крови из артерий в вены через капилляры физиология пришла к более сложной концепции.

Кровообращение в микрососудах диаметром до 100 мкм, обеспечивающих процессы обмена между кровью и тканями, называют микроциркуляцией (Б.В.Цвейфах 1961). Более широкий подход В.В.Куприянова и А.М.Чернуха (1987) трактует микроциркуляцию как весь комплекс процессов обмена и транспорта жидкости в тканях, отводя для внутрисосудистых процессов понятие «микрогемоциркуляция».

Сосуды микроциркуляторного русла представляют собой своего рода каркас или тканевые «водопровод и канализацию», встроенные в стены дома, то есть тесно связанные со стромой органов и тканей. На этом стромально-сосудистом каркасе селятся клетки паренхимы органов — их специализированные дифференцированные компоненты. Эта конструкция известна как структурно-функциональный элемент органа или ткани.

Роль и место микроциркуляции необходимо рассматривать в контексте общей технологической задачи системы кровообращения.

Основной функцией системы кровообращения является своевременная доставка тканям объема крови, адекватного их метаболической потребности. При этом требуется экономить функциональные ресурсы кровотока: если бы кровообращение во всех органах и тканях было постоянно избыточным, понадобилось бы увеличить работу сердечного насоса многократно выше его максимальных возможностей. Перфузия тканей в покое поддерживается на уровне чуть выше минимальной функциональной достаточности. По Л.А.Сапирстейну и [198] А.Гайтону (1989), рекордный уровень удельной перфузии наблюдается в почках (360 мл/мин х 100г ткани) и в надпочечниках (300). Затем следуют щитовидная железа (160) и печень (95). Сердце и мозг, традиционно воспринимаемые обыденным сознанием как «приоритетные органы», значительно уступают по удельному кровотоку лидерам (соответственно, 70 и 50). Весьма экономно кровоснабжаются покоящиеся мышцы (4) и кости (3).

Для выполнения вышеназванной технологической задачи системе необходимо:

1.Поддерживать постоянство важных для всего кровообращения в целом показателей так называемой системной гемодинамики : минутного сердечного выброса (МО), артериального давления (АД), объема циркулирующей крови, общего периферического сопротивления сосудов (ОПС), венозного возврата крови к сердцу (ВВ);

2.Обеспечивать необходимый кровоток в органах и тканях в соответствии с их непрерывно меняющейся функциональной активностью — это задача периферического кровообращения (регионарного, органного).

3.Обеспечивать транскапиллярный обмен, т. е. обмен между микроциркуляторными единицами и тканями.

Осуществление этих трёх задач — компетенция всех подразделов сердечно-сосудистой системы. Система функционирует как единое целое. Тем не менее, каждый подраздел выполняет свою задачу.

Движущей силой кровотока является энергия, задаваемая сердцем потоку крови в сосудах, и градиент давления — разница давлений между различными отделами сосудистого русла. Кровь течет из области высокого давления к области низкого. В системе кровообращения различают следующие функциональные подразделы:

1.Сердце — насос, генератор давления. Его МО задается, в конечном итоге, суммарным венозным возвратом из всех периферических микроциркуляторных единиц.

2.Сосуды высокого давления — упруго-растяжимые сосуды — смягчают колебания давления при деятельности сердца и превращают ритмичный выброс крови из сердца — в равномерный непрерывный кровоток (аорта, ее отделы, крупные артерии)

3.Резистивные сосуды (сосуды-стабилизаторы давления), которые вместе создают сопротивление кровотоку в сосудах органа (в основном, мелкие артерии и артериолы). Стенка артериол содержит толстый кольцевой слой гладкой мускулатуры, [199] сокращение и расслабление которой может значительно менять просвет сосуда, а значит, и сопротивление. Падение тонуса резистивных сосудов значительной массы тканей может сопровождаться падением системного АД. подобно тому, как давление на центральной водонапорной станции может резко снизиться если во всём городе открыть краны. Нечто подобное происходит при эмоциональном обмороке — вазовагальном коллапсе, когда стимуляция медиального гипоталамуса и передне-латеральных отделов нижней части продолговатого мозга (область А1) приводит к ингибированию вазоконстрикторов во всех сосудах и одновременному снижению МО.

С другой стороны, расширение артериол какого-то органа или ткани при сохранении величины системного давления увеличивает объем кровотока в данном органе. Таким образом, артериолы играют двоякую роль:
а)поддерживают уровень системного АД,
б)регулируют уровень местного кровотока через тот или иной орган или ткань.

В работающем органе под воздействием механизмов, рассматриваемых ниже, тонус артериол уменьшается, что обеспечивает увеличение притока крови, параллельно рефлекторно повышается тонус сосудов неработающих областей — это важно для поддержания АД. Суммарные величины общего периферического сопротивления и АД остаются примерно постоянными несмотря на непрерывное перераспределение крови между работающими и неработающими органами.

4.Сосуды-распределители кровотока — терминальные артериолы (они же прекапилляры или метартериолы), снабженные прекапиллярными сфинктерами. Этот специализированный отдел мельчайших артериальных сосудов (их диаметр около 9-12 мкм) участвует в создании ОПС, их спазм прекращает кровоток в капиллярах. Прекапилллярный сфинктер это одиночное гладкомышечное волокно, окружающее устье капилляра. В скелетных мышцах прекапиллярные сфинктеры отсутствуют, и их роль выполняется короткими метартериолами.

5.Обменные сосуды (капилляры и, частично, посткапиллярные участки венул, особенно так называемые высокоэндотелиальные венулы) — служат для организации транскапиллярного обмена и эмиграции клеток крови. Их общая поверхность примерно 1500 гектаров. На этой трубчатой поверхности диаметром 4-9 мкм одномоментно находится всего 250 мл (один стакан!) крови — это создаёт возможность эффективного обмена сквозь тонкую стенку между кровью и тканями. В тканях с интенсивным метаболизмом капилляров больше. В каждом органе кровь течет лишь по небольшой части капилляров (примерно 25%), остальные выключены из кровообращения. Функционируют или выключаются капилляры поочередно, в зависимости от состояния распределительных сосудов.

6.Аккумулирующие сосуды — собирательные и мышечные венулы и мелкие вены имеют выраженную депонирующую функцию (более 70% объема крови находится именно в венозном отсеке). Нельзя забывать и о том, что, хотя венулы имеют гораздо более бедный мышечный слой и скудную, по сравнению с артериолами, иннервацию, они способны вносить определенный вклад в посткапиллярную резистивную функцию и несколько изменять ОПС.

7.Шунтирующие сосуды (артериоло-венулярные анастомозы) имеются не во всех тканях: они, в частности, есть в коже, легких, почках. Артерио-венозные анастомозы — наиболее короткие пути между артериями и венами, снабженные сфинктерами. В обычных условиях анастомозы закрыты и кровь проходит через капиллярную сеть. Если они открываются, кровь поступает в вены, минуя капилляры. Например, анастомозы в коже участвуют в терморегуляции при повышении температуры свыше 35 или понижении ниже 15 градусов Цельсия.

8.Сосуды возврата крови — мало влияют на ОПС, но существенно — на венозный возврат к сердцу. Крупные венозные коллекторы и полые вены имеют тонкие стенки и гораздо более слабый сократительный аппарат, легко сдавливаются. Сила тяжести препятствует [200] возврату крови по венам. В основном три фактора способствуют движению крови по венам: наличие клапанов вен (преимущественно в венах конечностей), сокращения близлежащих скелетных мышц и отрицательное давление в грудной полости (в брюшной полости оно положительное).

9.Резорбтивные сосуды — лимфатический отдел системы кровообращения, в котором главная функция бесклапанных лимфоносных капилляров и снабженных клапанами посткапилляров состоит в отведении из тканей белка и избытка жидкости, а лимфатических сосудов — в транспортировке резорбированного материала обратно в кровь. Лимфатические капилляры начинаются в тканях слепыми пальцевидными или петлевидными выростами и, в отличие от кровеносных, часто лишены базальных мембран. У взрослого человека за сутки из кровеносного русла в интерстиций выходит около 20л белоксодержащей жидкости, из которой 2-4л в виде лимфы возвращается в кровеносную систему со скоростью около 100 мл/час. Лимфатическая система транспортирует также другие ингредиенты (липиды, гормоны, клеточные элементы, в частности, мигрирующие в ходе осуществления иммунного ответа между тканями и лимфоузлами). Особо важной функцией лимфатических сосудов является транспорт антигенов в лимфоузлы, необходимый для обеспечения первичного иммунного ответа. Лимфооттоку способствуют: сократительная деятельность стенок лимфатических сосудов, наличие клапанов в них, работа скелетных мышц, отрицательное давление в грудной клетке. Лимфоузлы являются эффективным биологическим фильтром, задерживающим чужеродные частицы, микроорганизмы, опухолевые клетки, токсины. Из лимфоузлов в лимфу поступают лимфоциты, цитокины в антитела. Лимфоузлы богато кровоснабжаются, причем их капилляры обеспечивают переход жидкости и низкомолекулярных компонентов из лимфы в кровь, в связи с чем в большинстве сосудистых областей лимфа в лимфоузлах концентрируется.

10.В микроциркуляторную динамику включена и экстравазальная циркуляция жидкости. Еще Ф.Реклингхаузен постулировал важную роль в тканевой циркуляции «соковых щелей», трактуемых современными анатомами, как интерстициальные пространства между микрососудами и тканевыми элементами. Геле подобное содержимое интерстициальною пространства служит средой обитания (и блуждания) для макрофагов и иммунокомпетентных клеток, гель перемещается и обменивается с плазмой и внутриклеточной жидкостью. По О.Хехтеру, интерстициальная жидкость присутствует в канальцах ГЭР и. практически, имеет широчайшую мембранную поверхность для обмена с различными внутриклеточными отсеками, не исключая и ядра. Следовательно, клетки, окруженные потоком микроциркуляции, по выражению этого [201] автора, «уподобляются не ящику, внутри которого находится мячик-ядро, а скорее, ноздреватому куску сахара в стакане чая» (1959). Тканевой гель может содержать большее или меньшее количество структурно связанной воды. Чем больше он насыщен водой, тем больше тургор ткани, и наоборот. Таким образом, тургор — мера гидратации ткани, а ни в коем случае не эквивалент понятия «внутритканевое давление». Из изложенного следует, что микроциркуляторному руслу, имеющему в своём составе и распределительные, и резистивные, и обменные и емкостные элементы, принадлежит в системе кровообращения уникальная и центральная роль. Подобно тому, как бюджет государства со здоровой экономикой не выдумывается законодателем, а складывается из налоговых взносов отдельных налогоплательщиков, сердце и центральные механизмы регуляции не могут оперировать любыми величинами МО и АД, а располагают в виде общего ресурса тем объемом крови, который определен суммой местных сосудистых реакций (см. также выше с.16). Каждый тканевой участок сам контролирует уровень кровотока, в зависимости от напряженности локальных метаболических процессов в нем (см. ниже). Объёмная скорость кровотока в отводящих сосудах формирует ВВ, который, в свою очередь, и определяет параметры сердечного выброса. Центральное вмешательство в этот гомеостатический контур осуществляется лишь в случаях резкого изменения ВВ.

Рассмотрим подробнее функциональную анатомию центрального звена системы кровообращения.

Соответственно строению структурно-функциональных элементов разных органов, микроциркуляторные сосуды имеют свои особенности (см. с.58‑59). Однако, данная часть периферического органного кровеносного русла повсюду состоит из микроциркуляторных единиц типового состава. В них входяткапилляры, мельчайшие артериолы и венулы артериоло-венулярные анастомозы, метартериолы и «магистральные каналы» (см. рис.42), а также лимфоносные сосуды. В типичной микроциркуляторной единице имеется одна приносящая артериола, снабженная выраженным мышечным слоем, и две выносящие посткапиллярные венулы. Метартериола — прямое продолжение приносящей артериолы, имеющая отдельные спирально расположенные гладкомышечные клетки и ведущая непосредственно в основной капилляр («магистральный канал») — наиболее крупный и прямой капилляр данной микроединицы, переходящий в посткапиллярную венулу. Из метартериол и из ветвей магистрального канала кровь может попадать в истинные капилляры. Кровь из капилляров сначала идет в посткапиллярные, а затем попадает в собирательные и мышечные венулы.

В некоторых органах микроанатомия сосудистых единиц имеет существенные отличия от типовой схемы. В пещеристых телах наружных половых органов, где требуется при эрекции обеспечивать быстрое и эффективное развитие венозной гиперемии, перекрывая отток крови, микроциркуляторные единицы имеют всего одну выносящую венулу на две артериолы. Особой формой микроциркуляции является портальное кровообращение. В портальных системах имеется собирающий сосуд между двумя капиллярными сетями. Такие системы предназначены для местного транспорта гуморальных управляющих сигналов, в частности, гормонов (либерины и статины, пептиды энтериновой системы, ренин), от клеток-продуцентов к клеткам-мишеням. Самая большая портальная система организма относится к воротной вене печени. Капиллярное звено портальной системы печени имеет широкие капилляры-синусоиды, куда попадает и артериальная, и венозная кровь (-соответственно, из v. porta и из a. hepatica). Портальное кровообращение присуще также гипоталамо-гипофизарной системе, почкам и тестикулам. В капиллярах клубочков почечной портальной системы имеются истинные поры. В классической анатомии портальные внутриорганные системы носили романтическое название «чудесная сеть». [202]

Рис.42 Микроциркуляторное русло типичного гистиона [203]

РЕГУЛЯЦИЯ МИКРОЦИРКУЛЯТОРНОГО КРОВОТОКА

Закономерности регуляции кровотока и реологические характеристики крови в микроциркуляторном русле имеют некоторые общие черты с системной циркуляцией. Так, по закону Ж.-Л.М.Пуазейля:

Q=πr4ΔR/8ηl

где: r-радиус сосуда, l — его длина, η — вязкость крови.

Следовательно, сопротивление кровотоку в микрососудах, так же как и в системной циркуляции, сильно зависит от вязкости крови и меняется при изменении её гематокрита и реологических характеристик. Но кровь может рассматриваться, как однородная жидкость только в сосудах диаметром больше 150 мкм, поэтому применимость закона Пуазейля ограничена крупными артериолами, а в более мелких сосудах микроциркуляторного русла, включая метартериолы, капилляры и мелкие венулы, он неприменим.

Кровоток в микроциркуляторной единице, как и в крупном сосуде, прямо пропорционален артерио-венозной разнице давлений ΔR и обратно зависит от сопротивления R на протяжении ее сосудов:

Q=ΔR/R

Чем выше разность давлений, тем больше линейная скорость кровотока в микрососудах (ν). Линейная скорость — это путь, пройденный в единицу времени каждой частицей крови. В отличие от объемной, линейная скорость кровотока неодинакова для различных участков сердечно-сосудистой системы. По закону Д.Бернулли, она наибольшая в артериях и наименьшая в капиллярах, т. е. обратно пропорциональна суммарной площади поперечного сечения.

Кровь — взвесь частиц разного диаметра на основе коллоидно-кристаллоидного раствора. Из за своего композитного состава она сочетает признаки ньютоновской (однородной упруго-несжимаемой) и неньютоновской жидкости. В крупных сосудах струю крови можно уподобить однородно-упругому телу, которое деформируется согласно зависимости:

T=ηΔε/∂t

где: T — напряжение, действующее на клетку в потоке крови, Δε/∂t -скорость деформации.

При этом, если в крупных сосудах неньютоновскими свойствами крови можно пренебречь, то в микроциркуляторном русле, особенно, при малых линейных скоростях, неньютоновские свойства крови проявляются особенно ярко, то есть она ведет себя при деформации не как упругое тело, а как совокупность деформируемых тел (Б.И.Ткаченко, 1984).

В потоке крови скорость отдельных частиц различна. В относительно крупных сосудах линейная скорость максимальна для частиц, движущихся в центральном потоке, и минимальна для пристеночных слоев. Кровь течет как бы скользящими друг по другу пластинами, которые сдвигаются одна относительно другой как целые тела, испытывая определенное трение и развивая напряжения сдвига. Эти напряжения деформируют клетки крови. Деформация, зависящая от свойств клеточных мембран и от величины действующего напряжения, будет делать линейные скорости клеток разными и определять текучесть крови в микрососудах. В крупных сосудах, а также в артериолах или венулах при достаточно большой линейной скорости, наблюдается характерное деление струи крови на осевой, богатый эритроцитами, и пристеночный — плазматический, обогащенный тромбоцитами и лейкоцитами кровоток. Такая картина характеризует ламинарное течение крови. При значительном замедлении потока деление на слои исчезает, растет вязкость и внутреннее трение и снижается текучесть, что ведет к повышению ОПС. От текучести крови будет зависеть время контакта клетки с капиллярной стенкой, поскольку через капилляры клетки проходят по поршневому типу, одна за другой (12-25 эритроцитов в минуту).

В капилляре линейная скорость кровотока не должна превышать скорости диффузии кислорода [204] через капиллярную стенку. (С.А.Селезнев и др., 1976). У млекопитающих в покое она находится, в среднем, на уровне 0,5-1 мм/сек (В.В.Куприянов, А.М.Чернух 1987), что обеспечивает около 0, 15 сек контакта форменного элемента с капилляром. Время контакта для эритроцитов определяет условия газообмена, для тромбоцитов и лейкоцитов — условия адгезии. Объемная скорость — это количество (объем) крови, проходящей в единицу времени через поперечное сечение сосуда. Объемная скорость кровотока, по закону непрерывности, определяется как произведение линейной скорости и площади поперечного сечения сосудов:

Q=vS

Через суммарное поперечное сечение каждого отдела кровеносной системы проходит за секунду одно и то же количество крови, равное секундному дебиту сердечного насоса. Если объемная скорость относится к системе кровообращения в целом, то она характеризует количество крови, нагнетаемой сердцем в аорту в единицу времени, т. е. минутный объем кровообращения (мл/мин). Если же применить ее для отдельных областей сердечно-сосудистой системы, то она будет определять кровоснабжение различных органов и тканей или распределение МО между потребителями — отдельными микроциркуляторными единицами.

Как подчеркивает Г.И.Мчедлишвили (1994), из всех сосудов микроциркуляторного русла только артериолы обладают механизмами активного сокращения. Капилляры не иннервируются и лишены гладкомышечных элементов, не снабжено нервами и большинство метартериол. В венулах иннервация и сократительные элементы представлены относительно скудно: так, в собирательных венулах имеются лишь рассеянные гладкие миоциты. Поэтому решающую роль в определении давления и кровотока в микроциркуляторном русле играет состояние внутриорганных артериол (по определению Чандрасомы и Тэйлора — приносящих сосудов с диаметром до 2мм, а также прекапиллярных, метартериолярных и анастомозных сфинктеров, открывающих или перекрывающих те или иные пути кровотока. Именно поэтому еще И.М.Сеченов уподобил обнаруженные А.В.Голубевым (1868) и И.Р.Тархановым (1874) прекапиллярные сосуды кранам. При этом артериолы обладают богатой симпатической, а в ряде органов — парасимпатической иннервацией. Сфинктеры же полностью лишены иннервации или иннервируются очень мало.

В связи с этим, регуляция системного кровотока и микроциркуляции имеет и существенные отличия. В системных эластических артериях сужение сосуда повышает давление, а расширение — понижает. Но принцип эластической камеры О.Франка, действующий в применении к системным сосудам и диктующий неизбежное повышение системного давления при сужении эластических артерий, в микроциркуляторном русле не актуален. Дело в том, что из-за наличия сфинктеров и нефункционирующих капилляров микроциркуляторные единицы не подпадают под модель эластической камеры с несжимаемой жидкостью.

Кровоток в этой области сосудистого русла, скорее, можно описать с помощью модели крана. Если кран, то есть приносящий сосуд расширяется — то при открытом прекапиллярном сфинктере это обусловливает не падение, а повышение давления во всей перфузируемой данным сосудом области. Сужение сосуда сказывается на заполнении капиллярных сетей и числе функционирующих капилляров, и давление в капиллярах падает. По А.Гайтону (1989), прекапиллярные сфинктеры не знают промежуточных положений: каждый отдельный сфинктер в определенный момент времени или закрыт, или полностью открыт В поверхностных и тонких тканях (например, крыло летучей мыши) это приводит к мерцанию сфинктеров — вазомоции (игре вазомоторов). В течение минуты каждый сфинктер несколько раз открывается и закрывается, причем суммарный период открытия пропорционален метаболическим нуждам ткани. В глубоких тканях при развитом коллатеральном кровообращении определенное число сфинктеров [205] капилляров, снабжающих какую-то область, всё время открыто, а какое-то резервное число — закрыто. Общее число открытых сфинктеров пропорционально в каждый момент времени метаболическим запросам данного участка ткани или органа.

Рассмотрение детальной картины нормальных механизмов регуляции микрокровотока находится за рамками задач данной книги. Однако, в целом нельзя не отметить, что в определении параметров микроциркуляторного кровотока, в отличие от поддержания системных констант кровообращения, местные регуляторные контуры доминируют над действием центральных нейроэндокринных механизмов, а гуморальная регуляция преобладает над рефлекторными взаимодействиями.

Нейрогенные воздействия в микроциркуляторном русле представлены ограниченно и адресованы, прежде всего, артериолам. Они исходят от симпатических вазоконстрикторов, терминали которых выделяют норадреналин, действующий на α1-рецепторы гладкомышечных клеток, и симпатических же вазодилятаторов, оперирующих у низших млекопитающих ацетилхолином, а у приматов — адреналином, через β2-рецепторы.

Констрикторные волокна преобладают в большинстве собственно симпатических и смешанных нервов, особенно, при иннервации кожи, почек, селезёнки и ЖКТ. Например, перерезка седалищного нерва лягушки дает в микрососудах плавательной перепонки иннервируемой им конечности активизацию кровотока, поскольку в интактном нерве резко преобладают волокна, несущие констрикторные сигналы. Норадреналиновые б1-рецепторы относительно мало представлены в сосудах мозга, сердца, их нет в матке, но их плотность высока в сосудах кожи.

Роль симпатических вазодилятаторов относительно велика в сосудах мозга, сердца, половых органов, скелетных мышц (где они являются холинергическими) и слюнных желёз. Адреналин является вазодилятатором в симпатических вазомоторных нервах печени. Имеются представления, что ряд симпатических вазодилятаторов, в частности, в коронарном русле и в трахее, используют в качестве медиатора аденозин (пуринэргическая вазодилятация)

Е.З.Коган (1936) указывал, что единственными, по сути дела, примерами нервов с преобладанием сосудорасширяющих волокон служат chorda tympani и п. erigens penis. По современным представлениям, вазодилятация при активации симпатических вазомоторов опосредуется интактным эндотелием, синтезирующим после адреналинового, пуринэргического или ацетилхолинового сигнала окись азота. Парасимпатические вазодилятаторы не имеют большого практического значения в регуляции вазомоторных реакций микрососудов, однако, по данным Дж.Барнстока, могут участвовать в М-холинэргической вазодилатации в мозге, легких и некоторых органах ЖКТ (1978).

Для описания поведения микроциркуляторного русла при различных реакциях традиционно привлекается понятие «сосудистый тонус». Прежде его значение сводилось к нейрогенной норадренергической вазоконстрикторной тонической импульсации от симпатического вазомоторного центра (область С1 передне-латеральных отделов верхней части продолговатого мозга и нижней части моста) к сократительным элементам сосудов. Такая импульсация с частотой 0,5-2 имп. /сек действительно регистрируется. Более того, блокада проведения этих импульсов при анестезии, либо перерезке спинного мозга ведет к падению среднециклового системного давления на 50% (А.Гайтон, 1989). Однако, в течение нескольких дней после подобной денервации происходит значительный рост давления, связанный с внутренним спонтанным тоническим сокращением гладких миоцитов.

Этот факт, а также отсутствие иннервации в значительной части микрососудов, заставляют оценить особую роль местного спонтанного компонента базального сосудистого тонуса, определяемую автоматической сократительной активностью самих гладких миоцитов. Таким образом, тонус сосудов не сводится к нейрогенному [206], а определяется различными сложно взаимодействующими между собой факторами.

1.Базальный (периферический или миогенный) компонент — заключается в сократительном автоматизме гладко-мышечных клеток, возникающем вследствие внутренней нестабильности их мембран и распространяющемся от клетки к клетке. Миогенная активность усиливается растяжением под влиянием давления крови (так называемая ауторегуляция). Она хорошо развита в почке, головном мозге, слабее в скелетной мускулатуре, сердце, кишечнике, отсутствует в коже. Миогенной активности все время противодействуют непрерывно образующиеся сосудорасширяющие тканевые метаболиты, на нее влияет содержание кислорода, ионов Na, Са, гистамин, простагландины.

Изменение базального тонуса — главный механизм местной регуляции кровотока, в покое базальный тонус определяет на 80% общую констрикторную активность гладких мышц прекапиллярных резистивных сосудов и прекапиллярных сфинктеров. У емкостных сосудов базальная сократительная активность незначительна — их тонус в большой мере определяется симпатической вазоконстрикцией.

2.Центральный (нейрогенный) компонент сосудистого тонуса — это, главным образом, текущая импульсация по вазоконстрикторным волокнам норадренэргических нервов (см. выше). В покое нейрогенный компонент низок в сравнении с величиной базального тонуса (исключение представляют резистивные сосуды кожи). «Нейрогенный контур в роли фактора, постоянно регулирующего сосудистый тонус, по-видимому, не выступает». (Ю.Е.Москаленко, С.И.Теплов; 1986). Однако, нейрогенные влияния могут быть существеными при патологии и в осуществлении ряда острых адаптивных реакций.

Помимо нервных механизмов, в определенных патологических ситуациях и при адаптивных реакциях известное влияние на сосудистую динамику оказывают системные гуморальные воздействия, в частности, гормоны мозгового вещества надпочечников, особенно сильно влияющие на кожно-мышечный кровоток, а также ангиотензины и вазопрессин, действующие в качестве системных вазоконстрикторов синергично с симпатическими сосудосуживающими сигналами. Однако, их действие более значительно сказывается на системных параметрах гемодинамики, чем на ее местных характеристиках.

Гораздо большее значение для микроциркуляции имеют наиболее мощные из всех известных вазоконстрикторов — паракринные пептиды эндотелины, вырабатываемые клетками внутреннего эпителия сосудов в ответ на механическое воздействие, тромбин и норадреналин. Это эффективные местные вазоконстрикторы. Эндотелин-3 действует в сосудах мозга, кишечника и почек, эндотелин-2 активен в почках и кишечнике, а эндотелин-1, по-видимому, убиквитарен для сосудистого русла. Синергистом рецепторов эндотелинов на гладких мышцах сосудов является змеиный яд сарафотоксин, вызывающий ишемические некрозы. Хроническое действие эндотелина-1 митогенно для гладкомышечных клеток.

Сильными вазоконстрикторами паракринного действия служат лейкотриены (с.154), а также некоторые пептиды диффузной эндокринной системы, например, нейропептид V.

Гуморальные вазодилятаторы — кинины, простагландины, гистамин и другие — это также, по преимуществу, агенты местного действия и их роль именно в регуляции микроциркуляции очень значительна. Это связано с тем, что лёгочные ангиотензинконвертазы активируют ангиотензины, но разрушают кинины, даже при однократном прохождении крови через малый круг. Пептиды диффузной эндокринной системы — вещество Р, предсердный натрийуретический пептид, вазоактивный интестинальный пептид и пептид, ассоциированный с геном кальцитонина, могут опосредовать местную вазодилятацию в специализированных микроциркуляторных бассейнах.

Наибольшее значение для поддержания соответствия локального кровотока и метаболических запросов отдельных структурно-функциональных элементов ткани имеют следующие механизмы: [207]

Рис.43. Факторы, регулирующие просвет артериол.

1.Гистометаболический механизм — предусматривает расширение микрососудов и открытие сфинктеров под влиянием вазоактивных продуктов тканевого обмена, количество которых пропорционально работе данного функционального элемента ткани или степени его гипоксии. В роли гуморальных агентов, изменяющих кровоток в зависимости от клеточной работы и метаболизма выступают углекислый газ, молочная кислота, катионы калия и водорода, продукты гидролиза АТФ. Существуют веские основания полагать, что наибольший вклад в метаболическую вазодилятацию, по крайней мере, при острых реакциях, осуществляемых в пределах 60мин., вносит аденозин, действие которого позволяет интактному эндотелию микрососудов вырабатывать из аргинина при помощи флавинзависимого фермента нитроксидсинтазы моноксид азота — эндотелиальный сосудорасширяющий фактор. Нитроксидсинтаза (НОС)-3 действует в эндотелии, НОС—2 — в макрофагах и иммунокомпетентных клетках, а НОС—1 — в нервной системе.

Окись азота опосредует и сосудорасширяющий эффект многих других медиаторов (кининов, ацетилхолина, серотонина и катехоламинов, полипептидных гормонов апудоцитарного происхождения), а также механических воздействий на сосуд — но всё это только при интактном эндотелии. Таким образом, NO является главным паракринным вазодилятатором,

В церебральном микроциркуляторном русле, помимо аденозина, очень значительна роль диоксида углерода и катионов водорода, сильно расширяющих мозговые артериолы. Интересно что прямой эффект диоксида углерода на вазомоторный центр, наоборот, приводит к системной стимуляции вазоконстрикции.

В почках расширение приносящих сосудов клубочков стимулируется понижением концентрации натрия и азотсодержащих продуктов белкового метаболизма в дистальных [208] канальцах. Определенное сосудорасширяющее действие во многих тканях способны оказать избыток ацетата, цитрата, магния и гиперосмолярное состояние протекающей по сосудам крови.

Принцип «больше поработал- больше получил» превратился бы в коммунистическое «кто не работает — тот не ест» и создавал бы большие проблемы для повреждённых и больных клеток и тканей, если бы не дополнялся своего рода «собесом», обеспечивающим интенсивное кровоснабжение тех участков ткани или органа, функция которых нарушена вследствие повреждения. Повреждённые ткани выделяют ряд медиаторов, обладающих мощным сосудорасширяющим действием: гистамин, брадикинин, каллидин, простагландины и др. Большинство из них является короткоживущими и действует сугубо локально. Подробно этот вопрос рассматривается ниже в разделе «Сосудистая реакция при воспалении» на с.290 и далее. Определенные количества гистамина и простагландинов выделяются и при усиленной работе органа, внося вклад в метаболическую регуляцию местного кровотока.

2.Кислородзависимый механизм — основан на свойстве гладких миоцитов расслабляться при гипоксии даже в отсутствие химических вазодилятаторов. Показано, что энергодефицит и гипоксия могут вызывать паретическое состояние вазомоторных сфинктеров. Это, в частности, объясняет расширение кожных сосудов при авитаминозе В1 — болезни бери-бери, при подъеме на высоту, отравлении цианидами, гипогликемии и т. д. При усиленной работе тканей повышается потребление кислорода, и относительная гипоксия способствует вазодилятации.

3.Гистомеханический механизм — основан на повышении базального тонуса гладкомышечных клеток при их растяжении. Возможно, этот миогенный автоматизм предохраняет микрососуды от повреждения высоким системным давлением. Однако, как указывает Гайтон, данный контур регуляции представляет собой положительную обратную связь в системе контроля кровяного давления и способен приводить к порочному кругу: выше давление — больше растяжение — выше тонус — больше ОПС — ещё выше давление и т.д. По-видимому, в нормальных условиях этого не происходит из-за уравновешивающего действия отрицательных обратных связей, формируемых двумя вышеназванными контурами.

Итак, благодаря наличию базального тонуса и вышеописанной системы местных «сдержек и противовесов», внутриорганное русло способно стабилизировать местный кровоток, руководствуясь лишь уровнем локального метаболизма, вопреки изменениям системного артериального давления, контролируемого центром. Центральная регуляция, практически, мало вмешивается в распределение общего ресурса МО и АД между бесчисленным множеством отдельных микроциркуляторных единиц. Метаболически детерминированному усилению местного кровотока в работающем органе сопутствует рефлекторное сужение сосудов, перфузирующих нефункционирующие ткани, что обеспечивает стабилизацию средне-системных параметров кровообращения. Экономия резервов кровотока достигается за счёт сочетания самоуправления на периферии и действия центральной регуляции. С этой точки зрения, одновременное повышение ОПС и системного АД наблюдается не столько потому, что уровень ОПС определяет значение АД, а скорее в силу того, что местные микроциркуляторные механизмы автоматически увеличивают ОПС при возрастании МО и АД, стремясь вернуть перфузию тканей к нормальным величинам (модель Гайтона-Грейнджера. см. с.18).

Длительная гипоксия или гиперфункция органов и тканей вводит в действие хронические механизмы адаптации микроциркуляторного русла, основанные на ангиогенезе — гиперплазии микрососудов.

Макрофаги и тромбоциты выделяют факторы ангиогенеза, среди которых важная роль принадлежит фактору некроза опухолей и тромбоцитарным факторам роста, подробнее рассматриваемым ниже. Под влиянием этих регуляторов происходит образование новых микрососудов и ткань обогащается кровеносными каналами. [209]

ОБМЕН ЖИДКОСТЬЮ МЕЖДУ КРОВЬЮ И ТКАНЯМИ И МЕСТНЫЕ ОТЁКИ.

Главным результатом микроциркуляции является транскапиллярный обмен. Обменивающиеся компоненты растворены в жидкости. Транскапиллярный обмен обеспечивается путем:

•диффузии,

•фильтрации,

•реабсорбции,

•пиноцитоза.

Каждый миллилитр плазмы крови за сутки не менее 6-7 раз оказывается вне сосудов, в тканевой жидкости. До 20л жидкости ежедневно совершает путь из капилляров и посткапиллярных венул в ткани и транспортируется обратно, через лимфу (3л) и через сосудистую стенку 17л. Так как в организме 10 миллиардов капилляров, то практически любая его клетка находится на расстоянии, не превышающем 30 микронов от ближайшего «обменного пункта». Обмен жидкостью не только необходим для удовлетворения метаболических нужд тканей, но и принимает участие в стабилизации давления в микроциркуляторном русле. Механизмы обмена жидкостью между кровью и тканями были впервые раскрыты Э.Г.Старлингом (1896). Согласно классической концепции, перемещение жидкости через сосудистую стенку определяется векторным равновесием следующих сил:

1.Гидростатическое давление в капиллярах, которое выдавливает жидкость в ткани. Величина этого давления на артериальном конце капилляров — около 30ммрт.ст., по ходу капилляров оно падает за счёт трения до 10 ммрт.ст. на их венозном конце. Среднекапиллярное давление оценивается в 17 ммрт.ст.

2.Коллоидно-осмотическое («онкотическое») давление плазмы, которое не совпадает с общим осмотическим давлением на клеточных мембранах, Его оказывают лишь те частицы, которые не проходят свободно через капиллярную стенку. Это исключительно молекулы белка, главным образом, альбумина и α1-глобулинов. Характерно, что фибриноген почти не участвует в создании онкотического давления Суммарное осмотическое давление на клеточной мембране оказывают все растворенные и взвешенные частицы и оно в 200 раз выше своей коллоидно-Осмотической составляющей. Но именно белковая составляющая общего давления оказывается единственно значимой для перехода жидкости через сосудистую стенку, так как солевые и неэлектролитные компоненты общего осмотического давления по обе стороны гистогематических барьеров уравновешены диффузией соответствующих относительно низкомолекулярных веществ, скорость которой в тысячи раз больше скорости фильтрации жидкости. В норме плазменная концентрация белков более чем в 3 раза превышает интерстициальную. В мышцах и мозге, с их малопорозными капиллярами, тканевая концентрация онкотических эквивалентов еще ниже. Поэтому белки плазмы создают онкотическое давление не менее чем в 19 ммрт.ст., удерживающее жидкость в сосуде. К этому добавляется еще около 9 ммрт.ст. за счет эффекта Ф.Дж.Доннана (1924) электростатической фиксации анионными белковыми молекулами избытка катионов во внутрисосудистом пространстве. Таким образом, общее удерживающее давление в 28 ммрт.ст. существует вдоль всего капилляра.

3.Среднее онкотическое давление тканевой жидкости составляет в обычных условиях 6ммрт.ст. и удерживает воду в тканях. Если бы избыток белка, попадающего в ткань путем трансцитоза и при воспалениях, не реабсорбировался через лимфатическую систему градиент онкотического давления между кровью и тканями был бы постепенно утрачен.

4.Гидростатическое давление интерстициальной жидкости — как полагали в течение почти 70 лет после Э.Г.Старлинга, должно быть положительной величиной, сопротивляющейся выходу жидкости из сосуда. В такой интерпретации организм выглядел чем-то вроде туго набитого плюшевого мишки. Эксперименты А.Гайтона (1961) произвели переворот в представлениях о тканевом давлении. Оказалось, что [210] под кожей между сосудами существует отрицательное (то есть, субатмосферное) присасывающее давление. В нормальных условиях давление свободной жидкости в большинстве тканей от -2 до -7 ммрт.ст. (в среднем -6).

Присасывание тканями жидкости из капилляров и посткапиллярных венул, фактически, значительно облегчает работу сердца по перфузии тканей и оказывает определяющее воздействие на пути нормальной микроциркуляции. Давление связанной тканевым гелем воды также находится на субатмосферном уровне, но на 1-2 ммрт.ст. выше, чем в свободной фазе. Положительным тканевое давление является только в органах, находящихся в замкнутом объёме, например, в головном мозге. В остальных тканях оно становится выше атмосферного только при заметных отёках. Частичный вакуум под кожей способствует компактному состоянию клеток в здоровых тканях даже в отсутствие скрепляющих соединительнотканных структур. При его утрате в отёчной, например, воспаленной ткани ослабевают связи между клетками.

Векторное взаимодействие вышеописанных сил в различных отделах обменных сосудов отражено в таблице6.

Комментируя эти красноречивые данные, заметим, что более высокая проницаемость и увеличенная площадь венозных концов капилляров, по сравнению с артериальными, уравновешивает встречные потоки, несмотря на почти вдвое меньшую абсолютную величину результирующего вектора резорбции, по сравнению с вектором транссудации. Вышеописанный механизм регулирует фильтрацию и реабсорбцию (рис.44). Однако, на гисто-гематической границе происходят и другие процессы — диффузия и трансцитоз, которые вносят важный вклад в определение состава тканевой жидкости.

Диффузия, фактически, является основным механизмом транскапиллярного обмена. Скорость фильтрационного потока значительно ниже скорости капиллярного потока крови. Однако подсчитано, что скорость гистогематического обмена воды очень велика, следовательно, она не определяется фильтрацией, а может быть связана лишь с диффузией. В результате обмен собственно воды в тканях, в основном, не следует механически переменчивыми характеристиками капиллярного кровотока.

Величина диффузии зависит от числа функционирующих капилляров (прямая зависимость), градиента концентраций (прямая зависимость), скорости кровотока в микроциркуляторном русле (обратная зависимость).

Легко диффундируют жирорастворимые вещества (кислород и, особенно, углекислота), механизмы транспорта водорастворимых веществ через капиллярную стенку рассмотрены [211] ниже при обсуждении явления экссудации, как компонента воспаления.

По классической концепции Старлинга, внутри капилляра, приблизительно на 2/3 его длины имеется точка равновесия всех вышеописанных сил, проксимальнее которой преобладает экстравазация жидкости, а дистальнее — резорбция. В идеальной точке равновесия обмена жидкости нет. Реальные измерения показывают, что определенная зона капилляра пребывает в околоравновесном положении, но и в ней выход жидкости, всё же, преобладает над резорбцией. Этот избыток транссудата возвращается в кровь по лимфатическим сосудам. Поистине, в микроциркуляторном русле «всё течет, всё изменяется» — по Гераклиту!

При увеличении гидростатического давления в микроциркуляторных обменных сосудах зона равновесия сдвигается в сторону посткапиллярных венул, увеличивая поверхность фильтрации и уменьшая площадь резорбции. Падение гидростатического давления ведёт к обратному сдвигу околоравновесной зоны. Общая объемная скорость фильтрации в отдельном гистионе определяется, главным образом, суммарной площадью поверхности функционирующих капилляров и их проницаемостью. Количественную оценку объемной скорости транскапиллярного перемещения жидкости можно произвести по формуле:

Qf = CFC [(Рс - Pi) - σ(Пс - Пi)]
где CFC — коэффициент капиллярной фильтрации, характеризующий площадь обменной поверхности (число функционирующих капилляров) и проницаемость капиллярной стенки для жидкости. Коэффициент имеет размерность мл/мин/100г ткани/ммрт.ст., т.е. показывает, сколько миллилитров жидкости в 1 мин фильтруется или абсорбируется в 100г ткани при изменении капиллярного гидростатического давления на [212] 1 ммрт.ст.; σ — осмотический коэффициент отражения капиллярной мембраны, который характеризует реальную проницаемость мембраны не только для воды, но и для растворенных в ней веществ, а также белков (Б.И.Ткаченко, 1994).

Скорость транскапиллярного перемещения жидкости может измениться при сдвиге величины CFC и любого из входящих в формулу параметров.

Отек — это типовой патологический процесс, заключающийся в создании избытка внеклеточной тканевой жидкости. Термин «отёк» не применяется по отношению к внутриклеточной гипергидратации (для её обозначения более приемлем термин «набухание клетки» — см. также выше с.152, 181). Водянкой называется скопление жидкости в серозной полости (гидроторакс, гидроперикард, асцит и т.д.).

По современным данным, при отёке всегда имеется не только избыток внеклеточной тканевой воды, но и повышается содержание натрия в тканевой жидкости. При отёке присасывающее тканевое давление всегда снижается, а при выраженной гипергидратации ткани становится положительным. Клинически начальному отёку с отрицательным тканевым давлением жидкости соответствуют симптом образования ямки при нажатии на отёчную ткань. Если ямка от нажатия не образуется — давление в ткани положительное, что соответствует «напряженному» или далеко зашедшему отёку. А.Гайтон подсчитал, что отрицательное давление в тканях (5,3 ммрт.ст.), дренажная функция лимфы в отношении жидкости (около 7 ммрт.ст.) и резорбция тканевого белка в кровь через лимфу (ещё 5 ммрт.ст.) суммарно создают «буферный резерв» порядка 17 ммрт.ст., предохраняющий от немедленного развития отёка при повышении фильтрующего и снижении онкотического давлений. Поэтому, отёк начинает формироваться, когда среднее внутрикапиллярное давление повысится (или онкотическое давление плазмы снизится) на 17-18 ммрт.ст., то есть но достижении минимум 35 ммрт.ст. — для капиллярного гидростатического или 10 ммрт.ст. — для плазменного онкотического давления. Отёк является проявлением несовершенного приспособления. Приспособительную роль отёков можно усматривать в том, что они предохраняют организм от развития гиперволемии, которая может иметь опасные для жизни острые последствия, заключающиеся в нарушении системной гемодинамики. Местный отёк оказывает дилюционное действие на тканевую жидкость, что потенциально уменьшает концентрации патогенов, токсинов и аутокоидов при повреждении ткани. Как это показано ниже в разделе «Патогенез экссудации», отёк — один из механизмов барьерности воспаления. В то же время, в отёчных тканях сдавливаются сосуды, дополнительно нарушается микроциркуляция, затруднена диффузия нутриентов, такие ткани легче инфицируются и хуже заживают. Особенно опасен отёк полостей тела, мозга и лёгких, так как при этом может произойти компрессия органов и блокада их жизненно важных функций. Подобно другим типовым патологическим процессам, отёк полиэтиологичен.

По этиологии отёки подразделяются на системные и местные. Под системными имеются ввиду отёки, возникшие вследствие действия общих для всего организма факторов, нарушивших интегральные механизмы регуляции водно-солевого обмена. Такие отёки обнаруживаются во многих частях организма и являются результатом общих соматических заболеваний.

Отметим, что даже если отёк по своему происхождению системный, практически, доктор при физикальном осмотре контролирует его проявления только в тех локальных точках организма, где тканевую гипергидратацию легче всего ощутить (например на лице, пальцах и голенях, где мягкие ткани тонким слоем покрывают костную поверхность или же в серозных полостях, где жидкость может накапливаться в свободном от геля виде и формировать водянки) Это не значит, что при системном отёке избытка жидкости и соли нет в других местах — просто в данном случае действует та неоспоримая практическая логика, которая заставляла героя известного анекдота искать потерянный неизвестно где ключ под ближайшим фонарём, потому что «тут светлее». [213]

В развитии системных отёков могут играть роль утрата онкотически активного белка плазмы (нефротический синдром, ожоговая плазморрея, голодание, печёночная недостаточность) или общее повышение капиллярного давления (сердечная недостаточность, почечная недостаточность). При системных васкулитах возможно и общее повышение проницаемости сосудов. Так или иначе, но при любых генерализованных отёках действуют те или иные патогенетические факторы, обусловливающие обязательную гиперфункцию ренин-ангиотензин-альдостероновой системы и общий избыток натрия в организме.

Системные отёки будут рассмотрены подробно в книге «Основы патохимии». В данном разделе необходимо остановиться на механизмах отёков местных.

В патогенезе любого местного отёка присутствует нарушение старлинговского равновесия.

Оно сводится к возрастанию внутрисосудистого гидростатического давления, снижению онкотического градиента, либо комбинации обоих механизмов. Часто фоном служит повышение проницаемости сосудов.

Фактически, локальный отёк может быть вызван одной из следующих возможных причин:

1.Воспалительный отёк (например, при ожоге) и его частный случай аллергический отек (например, отёк Квинке) — оба формируются в результате повышения гидростатического давления в капиллярах и увеличения сосудистой проницаемости под влиянием соответствующих медиаторов (см. ниже стр.293 и далее).

2.Гемодинамический отёк происходит при повышении гидростатического давления в обменных сосудах без первичного изменения их проницаемости (например, в конечности при наложении венозного жгута или в лёгких — при развитии острой левожелудочковой сердечной недостаточности).

3.Лимфодинамический отёк имеет место при обструкции лимфатических сосудов из-за нарушения их дренажной функции в отношении тканевой жидкости и белка, что постепенно приводит к утрате онкотического белкового градиента и к повышению тканевого давления свободной жидкости. При лимфодинамическом отёке, в отличие от всех вышеназванных, лимфоотток не увеличен, а понижен.

Это наблюдается при удалении регионарных лимфоузлов, а также при закупорке лимфососудов вследствие тропического паразитарного заболевания филяриоза, когда микрофилярии — личинки нематод Wuchereria bancrofti или Brugia malayi вызывают эмболию и окклюзию лимфососудов, их расширения (лимфангиэктазии) и воспаление с последующим фиброзом. Отёк нижних конечностей бывает столь серьёзен, что болезнь получила название слоновой.

Подчеркнём, что такая классификация не оставляет места понятию «токсический отёк», фигурирующему в некоторых руководствах (Г.В.Бурлаков, 1994). На практике оказывается, что отёки, вызванные фосгеном, дифосгеном, хлором, хлорпикрином, парами кислот, ядами биологического происхождения и токсинами бактерий, например, клостридий или сибиреязвенной бациллы, по механизмам возникновения укладываются в вышеприведенные градации, чаще всего, в категорию воспалительных.

Сомнения вызывает и возможность существования чисто нейрогенных отёков, в которых бы совсем не участвовали медиаторы воспаления.

следующая глава
предыдущая глава
содержание